¹³C NMR ANALYSIS OF ALKALOIDS FROM PESCHIERA FUCHSIAEFOLIA

RAQUEL M BRAGA, HERMOGENES F LEITÃO FILHO* and FRANCISCO DE A M REIS†
Instituto de Química, Universidade Estadual de Campinas, C P 6154, Campinas 13100, São Paulo, Brazil

(Received 8 March 1983)

Key Word Index—Peschiera fuchsiaefolia, Apocynaceae, bisindole alkaloids, voacamine, decarbomethoxy-voacamine, demethylvoacamine, dihydrovoacamine, voacamidine, affinisine, 16-epiaffinine, perivine, voachalotine, voacangine, voacanginehydroxyindolenine, ¹³C NMR

Abstract—Fractionation of an ethereal extract of *Peschiera fuchsiaefolia* resulted in the isolation of decarbomethoxyvoacamine, demethylvoacamine, voacamidine, perivine, 16-epiaffinine and voacanginehydroxyindolenine, together with the previously reported alkaloids voacamine, voacangine, voachalotine and affinisine Analysis of the ¹³C NMR spectra of the bisindole alkaloids and of 16-epiaffinine is reported

INTRODUCTION

Reports on the anticancer activity of bisindole alkaloids of the voacamine type [1] led us to re-investigate the bark of Peschiera fuchsiaefolia [2, 3], directing our research on the isolation of these compounds

RESULTS AND DISCUSSION

After alkalınızatıon the ground bark of P fuchsiaefolia was extracted with ether The crude extract was dispersed in 10% acetic acid and the aqueous solution was extracted with chloroform and ether at different pHs, yielding fractions A, B and C These fractions were monitored by mass spectrometry, which revealed that B was rich in dimeric compounds. This fraction was then submitted to Sephadex LH 20 column chromatography allowing a good MW separation, followed by preparative TLC purification leading to the isolation of the bisindoles decarbomethoxyvoacamine (1a),demethylvoacamine (1c) and voacamidine (1d), and the monomeric indoles affinisine (2) and voachalotine (3) Pure voacangine (4) voacanginehydroxyindolenine (5) and voacamine (1a) were obtained from fraction A, while fraction C furnished two α-acylindoles, perivine (6) and 16-epiaffinine (7), which were not reported previously [2, 3]

The ¹³C NMR spectra were interpreted on the basis of standard chemical shift theory, comparison with reference compounds and mainly by analysis of the SFORD and fully coupled spectral data

Table 1 presents the ¹³C NMR data of compounds 1a-1f The shift assignments were made in conformity with the published data of voacangine (4) [4, 5] vobasinol (8) [6] and ibogaine (9) [4, 5] The replacement of the C-3 hydroxyl group of 8 by a voacangine unit in voacamine (1a) produced the expected shielding at C-3 ($\Delta\delta$ 29 4) and

deshielding at C-14 and C-15 ($\Delta\delta$ 1 1 and 4 1, respectively) Analogous effects were observed in the tabernaelegantines [7] On the other hand, in the voacangine moiety the replacement of the hydrogen at C-11 by a vobasine unit induced a deshielding of the *ipso* ($\Delta\delta$ 15 7) and shielding of the *ortho* carbons ($\Delta\delta_{C-10}$ 3 0 and $\Delta\delta_{C-12}$ 1 4) The remaining carbons showed little or no modification

The R configuration at C-20 of dihydrovoacamine (1e), the sole product of the catalytic hydrogenation of 1a, was deduced from the chemical shifts of C-14 and C-16 C-14 at δ 31 4 was shielded ($\Delta\delta$ 52) in 1e by comparison with the same site of 1a due to a γ -interaction with C-19, while C-16 was deshielded ($\Delta\delta$ 37) (The differences produced by the α or β ethyl group orientation were previously discussed for tabernaelegantines A and B [7], dregamine and tabernamontanine [6])

and tabernamontanine [6]) Comparison of the 13 C chemical shifts of demethylvoacamine (1c) and voacamine (1a) revealed some interesting conformational aspects concerning the N_b -methyl group. Introduction of the N-methyl group into 1c induced simultaneous shielding at C-6 ($\Delta\delta$ 48) and C-16 ($\Delta\delta$ 63). These facts can be explained by taking the inversion of N_b into consideration. Thus the rapid interconversion between the equatorial and axial N_b -methyl group leads to the observed shieldings. Analogous effects were observed at C-6 ($\Delta\delta$ 63) and C-16 ($\Delta\delta$ 26) of 1e for the introduction of the N-methyl group in demethyldihydrovoacamine (1f) (going from 1f to 1e). The larger $\Delta\delta$ value at C-6 suggests a preferential equatorial position for the N_b -methyl group in the dihydro compound, thus avoiding an additional methyl H_{20} 1,3-diaxial interaction

An interesting feature revealed in our work was the isolation of demethylvoacamine (1c) together with voacangine (4) and the α -acylindole perivine (6), implying that both monomers 4 and 6 are precursors in the biosynthetic pathway of 1c Though in vitro data [8] support the above suggestion, rigorous in vivo experiments would provide final confirmation

EXPERIMENTAL

Mps are uncorr Specific rotations were measured in CHCl₃, UV spectra in EtOH and IR spectra in CHCl₃ ¹H NMR spectra

^{*}Present address Departamento de Morfologia e Sistematica Vegetais, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13100, São Paulo, Brazil

[†]To whom correspondence should be addressed

- 4 R = COOMe
- 9 R=H

$$R_3$$
 R_2
 R_1
 R_1

- **6** $R_1 = H$, Z = O, $R_2 = H$, $R_3 = COOMe$
- 7 $R_1 = Me, Z = O, R_2 = CH_2OH, R_3 = H$
- **8** $R_1 = Me$, $Z = \alpha H$, βOH , $R_2 = H$, $R_3 = CO_2 Me$

- 2 $R_1 = CH_2OH_1R_2 = H$
- 3 $R_1 = COOMe$, $R_2 = CH_2OH$

at 60 and 100 MHz were obtained using TMS as int standard ¹³C NMR spectra were recorded at 25 2 MHz with Fourier transform using CDCl₃ as solvent and TMS as int standard MS were determined at 70 eV Silica gel 0 05–0 25 mesh (Carlo Erba) and silica gel HF_{254–366 nm} (Merck) were used for CC and TLC, respectively Detection of components was made by UV (254 and 305 nm) and spraying with Dragendorff's reagent followed by MeOH-H₂SO₄ and heating the plates at 150° for 5 min

Plant material Stem bark of P fuchsiaefolia (DC) Miers was collected in the Zeferino Vaz University City The air-dried bark (2 929 g) was moistened with a saturated NaHCO₃ soln and extracted in a Soxhlet with Et₂O On concn, the Et₂O extract gave a viscous oil which was added to a 10% HOAc soln and kept at 5° overnight After filtration the aq phase was extracted with Et₂O (extract A 6 65 g) and CHCl₃ (extract B 18 14 g) The pH was then raised to 8 with a saturated NaHCO₃ soln and extracted with Et₂O (extract C 8 52 g) and CHCl₃ (extract D 0 25 g)

Extract A (296 g) was fractionated on a silica gel column eluting with CHCl₃, and CHCl₃ with increasing amounts of MeOH, yielding voacamine (1a) (0076 g) [9], voacangine (4) (041 g) [10] and voacanginehydroxyindolenine (5) (01388 g) [11] TLC also indicated the presence of demethylvoacamine (1c) [12] and affinisine (2) [13]

Extract B A Sephadex LH 20 column (6 g) eluted with CHCl₃-MeOH (9 1) permitted a crude separation of the dimeric from the monomeric compounds. The combined fractions were further purified using a silica gel column and/or prep TLC, yielding the bisindoles voacamine (1a) (0 196 g) [9], demethyl-

voacamine (1c) (0 232 g) [12], decarbomethoxyvoacamine (1b) (0 178 g) [14] and voacamidine (1d) (0 206 g) [12], and the indoles vonchapotine (3) (0 221 g) [13] and affinisine (2) (0 329 g) [13]

Extract C (3 g) was fractionated on a silica gel column eluting with CHCl₃, and CHCl₃ with increasing amounts of MeOH, leading to the isolation of perivine (6) (0 1399 g) [8, 10], 16-epiaffinine (7) (0 2043 g) [15], affinisine (2) (0 2167 g) [13] and decarbomethoxyvoacamine (1b) (0 1295 g) [14]

Dihydrovoacamine (1e) An EtOH soln of voacamine (1a) (0 206 g) with a catalytic amount of PtO₂ was submitted to hydrogenation (45 psi H₂) in a Parr apparatus for 30 min Filtration through a Celite pad and evapn of solvent furnished 0 198 g of dihydrovoacamine, mp 210–212° (MeOH), $[\alpha]_{\rm D}^{\rm 2D}$ +40 9° (0 010 g/ml CHCl₃), UV $\lambda_{\rm max}^{\rm CHCl_3}$ nm (log ϵ) 226 2 (4 75), 286 2 (4 28), 293 7 (4 28), IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹ 3450, 1710; ¹H NMR δ 0 93 (m), 2 47 (3H, s), 2 60 (3H, s), 3 63 (3H, s), 3 93 (3H, s), 7 48 (1H, s), 7 60 (1H, s), MS m/z (rel int) 720 (55), 706 [M]⁺ (31), 511 (100)

Demethyldihydrovoacamine (1f) An EtOH soln of demethylvoacamine (1e) (0 206 g) was hydrogenated as above to furnish 0 149 g 1f Mp 210° (MeOH), UV $\lambda_{\rm max}^{\rm CHCl_3}$ nm (log ε) 226 8 (4 68), 285 (4 23), 293 (4 22), IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹ 3460, 1720; ¹H NMR δ 0 93 (t), 2 47 (3H, s), 3 67 (3H, s), 3 97 (3H, s), MS m/z (rel int) 720 (62), 706 [M]⁺ (44), 136 (100)

Acknowledgements—We wish to express our appreciation to Professor Anita J Marsaioli for helpful suggestions, Dr Norbert

Table 1 13C NMR data for voacamine alkaloids and their derivatives

Carbon	4	8	9	7	1a	1b	1c	1e	1d	1f
2		135 4		134 4	135 5	135 5	135 5	135 6	1349	135 7
3		66 8		189 5	374	376	37 1	372	37 1	37 3
5		59 4		56 5	599	59 7	53 3	59 2	598	530
6		196		193	198	194	24 6	192	190	25 5
7		107 3		1204	109 6	1100	1102	1098	1108	1109
8		128 7		128 1	129 4	129 4	129 7	1296	129 9	129 5
9		1176		121 2	1172	1170	1171	1172	1169	1173
10		1186		120 2	1198*	1186	1187	1186	118 5	1187
11		121 4		126 5	121 3	121 2	121 3	121 3	120 5	121 3
12		1100		1121	1101	1100	1106	1105	1094	1104
13		1367		1363	136 2	137 5	137 1	1369	1374	137 1
14		35 5		43 4	36 6	36 1	36 3	31 4	37 1	316
15		29 2		31 2	33 3	33 4	34 1	328	32 1	334
16		47 1		38 5	460	46 7	52 3	49 7	46 9	523
18		122		120	123	122	120	114	122	11 1
19		1186		120 2	118 7*	1186	1173	23 5	118 5	23 5
20		136 5		135 2	1377	1378	140 1	437	1379	459
21		53 9		519	52 3	52 2	44 1	519	52 3	408
COOMe		1743		_	170 7	171 1	1710	171 5	1714	1713
COOCH ₃		50 3		_	498	49 7	498	49 5	498	49 7
NMe		42 1		41 7	419	42 1	_	424	42 2	_
CH ₂ OH				66 7						
2′	1373		1429		1369	142 1	1376	137 5	1388	137 5
3′	51 7		500		520	49 7	518	52 3	510	519
5'	53 1		54 2		530	54 1	530	530	539	530
6′	22 2		20 7		22 1	206	22 2	22 2	249	22 2
7′	1100		109 1		109 6	108 4	109 6	1103	1090	1098
8′	129 1		129 7		129 4	1284	129 7	1300	126 2*	130 1
9′	100 7		100 3		99 1	98 5	99 1	990	126 4*	99 2
10'	1540		1539		1506	1507	1507	1508	1524	1509
11'	1119		1108		127 1	1279	127 1	1270	1125	127 1
12'	111 1		1106		109 5	109 6	109 7	109 6	109 4	109 6
13'	1306		1300		1300	1290	130 1	130 3	1318	1302
14'	27 3		26 5		27 2	26 1	27 3	27 3	27 2	27 3
15'	320		320		318	31 7	319	319	318	319
16'	550		420		548	409	548	548	558	549
17'	36 5		34 2		36 2	33 9	36 3	364	33 5	36 4
18'	117		119		115	118	116	116	116	115
19′	26 7		278		266	276	26 7	267	26 7	267
20′	39 1		41 5		38 8	41 7	38 9	38 9	38 9	389
21'	57 6		57 5		56 9	57 5	570	570	58 2	570
COOMe	175 6		_		1749	_	1749	1750	175 5	1749
COOCH ₃	52 7				518	_	500	49 7	52 5	506
OMc	55 7		56 0		560	559	56 0	56 0	57 8	560

Spectra were obtained at 25 2 MHz in Fourier transform mode in CDCl₃ solutions. Chemical shifts are expressed on the TMS scale according to δ TMS = δ CDCl₃ + 76 9 ppm

Neuss of Lilly Research Laboratories for providing an authentic sample of perivine and the Conselho Nacional de Desenvolvimento Científico a Technológico—CNPq—for financial support

REFERENCES

- 1 Kingston, D G I (1978) J Pharm Sci 67, 272
- 2 Fernandez, M E, Albonico, S M and Ruveda, E A (1967) An Asoc Quim Argent 55, 239
- 3 Achenbach, H (1966) Tetrahedron Letters 4405

- 4 Damak, M, Poupat, C and Ahond, A (1976) Tetrahedron Letters 3531
- 5 Wenkert, E, Cochran, D W, Gottlieb, H E, Hagaman, E W, Braz F°, R, Matos, F J A and Madruga, M I L M (1976) Helv Chim Acta 59, 2437
- 6 Ahond, A, Bui, A M, Potier, P, Hagaman, E W and Wenkert, E (1976) J Org Chem. 41, 1878
- 7 Bombardelli, E, Bonati, A, Gabeta, B, Martinelli, E M, Mustich, G and Danieli, B (1976) J Chem. Soc PerkinTrans 1, 1432
- 8 Büchi, G, Manning, R E and Monti, S A (1964) J Am

^{*}Assignments for these signals within a vertical column may be reversed

- Chem Soc 86, 4631
- 9 Voticky, Z, Jahodar, L and Cava, M P (1977) Collect Czech Chem. Commun 42, 1403
- 10 Holubek, J and Strouf, O (1965) Spectral Data and Physical Constants of Alkaloids, No 295, Heyden, London
- 11 Thomas, D W and Biemann, K (1968) Tetrahedron 24, 4223
- 12 Achenbach, H and Schaller, E (1976) Chem Ber 109, 3527
- 13 Achenbach, H (1966) Tetrahedron Letters 4405
- 14 Thomas, D W and Biemann, K (1965) J Am Chem Soc 87, 5447
- 15 Naranjo, J, Pinar, M, Hesse, M and Schmid, H (1972) Helv Chim Acta 55, 752